Assignment 2.

This homework is due Tuesday 10/5/2010.

There are total 72 points in this assignment. 60 points is considered 100%. If you go over 60 points, you will get over 100% for this homework and it will count towards your course grade.

Collaboration is welcome. If you do collaborate, make sure to write/type your own paper.

- (1) (Exercises 3.1.1b, d, 3b, d) Write first five terms of the following sequences:
 (a) [1pt] x_n = (-1)ⁿ/n,
 - (b) [1pt] $x_n = \frac{1}{n^2 + 1}$,
 - (c) [1pt] $x_1 = 2, x_{n+1} = \frac{1}{2}(x_n + 2/x_n),$
 - (d) [1pt] $x_1 = 3, x_2 = 5, x_{n+2} = x_n + x_{n+1}$.
- (2) (a) [3pt] (Theorem 3.2.3) Let $X = (x_n)$ and $Y = (y_n)$ be sequences in \mathbb{R} converging to x and y, respectively. Prove that X Y converges to x y.
 - (b) [3pt] (Exercise 3.2.3) Show that if X and Y are sequences in \mathbb{R} such that X and X + Y converge, then Y converges.
 - (c) [3pt] (Exercise 3.2.2b) Give an example of two sequences X, Y in \mathbb{R} such that XY converges, while X and Y do not.
- (3) In each case below, find a number $K \in \mathbb{N}$ such that the corresponding inequality holds for all n > K. Give a *specific number* as your answer, for example K = 1000, or $K = 2 \cdot 10^7$, or K = 139, etc. (Not necessarily the smallest possible.)

You can use a calculator if you want to. However, 1) this problem can be done without using a calculator, 2) even if you do use one, your answers still should be justified regardless of that.

- (a) $[2pt] \left| \frac{100-n}{n} (-1) \right| < 0.054352,$
- (b) [2pt] $\left| \frac{200n+1000}{n^2-1001} \right| < 0.1,$
- (c) [2pt] $\left| \frac{0.2n^2 200n + 1000}{0.1n^2 1001} 2 \right| < 0.1,$
- (d) [2pt] $|1/3^n 1/n^2 + 100/n^5| < 0.01,$
- (e) [2pt] $\left| \frac{\cos(863n)}{\log n} \right| < 0.032432,$
- (f) [4pt] (See example 3.1.11(c)) $|\sqrt[n]{n} 1| < 0.1$,
- (g) [3pt] $\left| \left(\sqrt{n^2 + n + 1} n \right) \frac{1}{2} \right| < 0.005.$

(4) REMINDER. Recall definition of a sequence in \mathbb{R} converging to an $x \in \mathbb{R}$: Let $X = (x_n)$ be a sequence in \mathbb{R} , let $x \in \mathbb{R}$. $X = (x_n)$ converges to x if for any $\varepsilon > 0$, there is a $K \in \mathbb{N}$ such that for any n > K, the following inequality holds: $|x - x_n| < \varepsilon$.

Below you can find (erroneous!) "definitions" of a sequence converging to x. In each case describe, exactly which sequences are "converging to x" according to that "definition".

- (a) [4pt] Let X = (x_n) be a sequence in ℝ, let x ∈ ℝ. X = (x_n) "converges to x" if for any ε > 0, for any K ∈ ℕ, for any n > K, the following inequality holds: |x x_n| < ε.
 (If you are confused at this point, think of the problem this way: suppose for some sequence (x_n) and a number x ∈ ℝ you know that statement (a) is true. What can you say about about (x_n)?)
- (b) [4pt] Let $X = (x_n)$ be a sequence in \mathbb{R} , let $x \in \mathbb{R}$. $X = (x_n)$ "converges to x" if **there is a** $K \in \mathbb{N}$ **such that for any** $\varepsilon > 0$, for any n > K, the following inequality holds: $|x x_n| < \varepsilon$.
- (c) [4pt] Let $X = (x_n)$ be a sequence in \mathbb{R} , let $x \in \mathbb{R}$. $X = (x_n)$ converges to x if **there is** an $\varepsilon > 0$ such that there is a $K \in \mathbb{N}$ such that for any n > K, the following inequality holds: $|x x_n| < \varepsilon$.
- (d) [6pt] Let $X = (x_n)$ be a sequence in \mathbb{R} , let $x \in \mathbb{R}$. $X = (x_n)$ "converges to x" if for any $\varepsilon > 0$, there is a K such that **there is** $n > K \in \mathbb{N}$, the following inequality holds: $|x x_n| < \varepsilon$.
- (5) REMINDER. Recall that a sequence $X = (x_n)$ in \mathbb{R} does not converge to $x \in \mathbb{R}$ if there is an $\varepsilon_0 > 0$ such that for any $K \in \mathbb{N}$ there is $n_0 > K$ such that following inequality holds: $|x x_n| \ge \varepsilon_0$.

In each case below find a real number ε_0 that demonstrates that (x_n) does not converge to x.

- (a) [2pt] $x_n = 1 + 0.1 \cdot (-1)^{n+1}, x = 1,$
- (b) [2pt] $x_n = 1/n, x = 1/17,$
- (c) [2pt] $x_n = (-1)^n n^2, x = 0.$
- (6) (Exercise 3.1.8) Let (x_n) be a sequence in \mathbb{R} , let $x \in \mathbb{R}$.
 - (a) [4pt] Prove that $\lim(x_n) = 0$ if and only if $\lim(|x_n|) = 0$.
 - (b) [3pt] Prove that if (x_n) converges to x then $(|x_n|)$ converges to |x|.
 - (c) [3pt] Give an example to show that the convergence of $(|x_n|)$ does not imply the convergence of (x_n) .
- (7) [4pt] (Exercise 3.2.7) If (b_n) is a bounded sequence and $\lim(a_n) = 0$, show that $\lim(a_nb_n) = 0$. Explain why Theorem 3.2.3 (Arithmetic properties of limit) cannot be used.
- (8) [4pt] (Exercise 3.2.11) If 0 < a < b, determine $\lim \left(\frac{a^{n+1}+b^{n+1}}{a^n+b^n}\right)$.

 $\mathbf{2}$